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Abstract. We apply Darboux transformations to the Schrodinger equation in three 
dimensions and derive the general form of the potentials and potential differences which 
can be treated by these transformations. In particular we establish the existence of a new 
class of potentials whose solutions are related to each other by these transformations. 

1. Introduction 

Various analytical methods are available in the literature to solve the time independent 
Schrodinger equation in three dimensions for some special potentials. In general these 
procedures require a coordinate system in which the equation is separable and then 
solve the resulting one-dimensional equations by various techniques which are available 
to this end. Among these one-dimensional techniques the factorisation method and 
its generalisations [ 1,2] were useful in various physical contexts. However, the 
extension of this technique to generic problems in higher dimensions (namely, without 
the assumption of separability) yields non-trivial results only if one uses second-order 
operators [3]. Still a generalisation of this technique to higher dimensions might be 
of interest not only in quantum mechanics but also in other physical applications 
which utilise the Helmholtz equation, e.g. ocean acoustic [4]. 

In an attempt to find such a generalisation one recalls that the origins of the 
factorisation method are related to the theory of Darboux transformations [5]. It is 
therefore of interest to examine the direct application of these transformations to 
Schrodinger equations in higher dimensions. In this context two recent applications 
of this technique, to coupled systems in one dimension and supersymmetric models, 
appeared in the literature [6-81. In spite of these results the general application of 
Darboux transformations in higher dimensions remains open. It is therefore our 
objective in this paper to investigate and give a detailed answer as to when two 
Schrodinger equations (and consequently their solutions) are related by these transfor- 
mations. The application of those transformations to non-linear partial differential 
equations will be deferred to a later publication. 

The plan of the paper is as follows. In Q 2 we review Darboux transformations in 
one dimension and then define their counterparts in higher dimensions. We then derive 
the basic equations which govern these transformations. In Q 3 we classify the potential 
differences which can be related by these transformations in three dimensions. Finally 
in 0 4 we give the general solution to the basic equations of this technique in three 
dimensions. 
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2. Darboux transformations in higher dimensions 

Darboux transformations for a single ordinary differential equation were defined as 
foll ow s. 

Dejinition 1. Given the equation 

cp” = (U ( X) + A ) cp 

we say that the transformation 

X E R  

sl, = 4 X ) c p  + B(x)cp’ 

is a Darboux transformation if sl, satisfies a differential equation of the form 

+”=(v(x)+A)+.  (2.3) 

When B = 1 it is easy to show that (2.2) represents a Darboux transformation only 
if 

A”+ U’+ A( U - U )  = 0 

2 A ’ + u - v = 0 .  

Hence we infer that 

A ’ - A ’ + ~  = 

(2.4) 

where v is an integration constant. Linearising equation (2.5) by the transformation 
A = -l’/l we obtain 

l ” = ( u ( x ) + v ) l .  (2.6) 

Thus is an eigenfunction of (2.1) with A = v. From (2.4) it then follows that 

v = U - 2(ln 5)’‘ (2.7) 

i.e. a Darboux transformations changes the potential function u ( x )  by -2(ln 6)” where 
{ is an arbitrary eigenfunction of (2.1). 

In complete analogy to the one-dimensional case we now define Darboux transfor- 
mations for the Schrodinger equation in higher dimensions. 

Dejinition 2. We say that 

sl, = A(x)cp + B ( x )  * Vcp X E  R“ n > l  

is a Darboux transformation for 

V2p = ( u ( x ) + A ) c p  

if sl, satisfies a differential equation of the form: 

V ’ + = ( u ( x ) + A ) + .  

(2.9) 

(2.10) 

Remarks. (i) In the following we consider explicitly equations (2.8) and (2.10) in 
three dimensions only. However, our approach will apply to other dimensions. 

( i i )  We observe that Darboux transformations are invertible in one but not in 
higher dimensions. In fact the inverse of the transformation (2.2) with B = 1 is 

cp ( A  - d/dx)sl,. 
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In higher dimensions, however, Darboux transformations are not invertible in general. 
Thus if 

cp = ( C  + D * V)+ (2.11) 

is an inverse of (2.8) with B # 0 then by combining (2.8) with (2.11) we infer that 

Bl Dz + B*D1= B1 D3 + B,D, = BzD3 + B, 0 2  = 0 

B ,  Dl = B2 D2 = B3 0 3  

and 

A D  + CB+ ( B .  V)D = 0. 

Together these equations imply that D = 0 and C = 0. 

tion for (2.9) we substitute (2.8) in (2.10) and use (2.9). This yields: 
To derive the constraints on A, B which ensure that (2.8) is a Darboux transforma- 

pV2A+2VA. Vcp+A(ucp +Ap)+V*B. Vp + B *   VU + u V ~  +AVcp)+2(VB) * V ( V p )  

= A u ~  + AA9 + vB. Vcp + A B .  Vp.  

Considering this equation as a polynomial in cp, Vp, a2p/ax ay, etc, and using (2.9) 
whenever possible we obtain the following systems of equations for A, B = ( B , ,  . . . , B,): 

i, j = 1, . . . , n aB, aBJ- -+--0 
ax, ax, 

- -  . . .  -- 
ax, 

V*A+A(u - U ) +  B * V U  + 2 f ( u  + A )  = O  

2VA + B( U - U )  = -V*B 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where f ( x )  is (at the present) an arbitrary function. 
In the following sections we solve these equations in full generality in three 

dimensions and thus give a general classification for the potentials and potential 
differences which can be related to each other through Darboux transformation. 

3. Classification for U - U 

Since equations (2.12) and (2.13) are independent of A, U, U we can solve them to 
obtain the general form of B (and hence f ( x ) ) .  A long (and interesting) algebra then 
yields 

B I  = t U g ( X 2 - y 2 - Z 2 ) + a 6 x y + U , X Z + U g X + C ,  (3.1) 

Bz = $ a 6 ( y 2  - X *  - z’)  + U ~ X Y  + U ~ Y Z  + U ~ Y  + ~2 

B 3 -1 - *a,( z 2  - x 2  - y2)  + agxz + a,yz + agz + c3 
( B  can be recognised as the general conformal second-order Killing tensor in Euclidean 
space). 

Although (3.1)-(3.3) give the general solution of (2.12) and (2.13) one can obtain 
an additional constraint on the coefficients of these solutions from (2.15). In fact by 
taking the curl of this equation we obtain 

(3.4) ( U  - u ) V  x B - B  x V(U - V )  = O .  
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(This is the integrability condition on (2.15).) Taking the scalar product ofthis equation 
with B then yields 

B .  V x B = 0. (3.5) 

From (3.1)-(3.3) it then follows that 

~ 5 ~ 2  = a6c1 a5c3 = ~ 7 ~ 1  a7c2 = a6c3. (3.6) 

Using these constraints we can rewrite B as 

B =  f x - t a w  

where 

f= 'V  3 ~ = a ~ x + a , y + a , z + a ~  

w=-V B = ( a , , a , , a , )  2 

(3.7) 

a = x x - 2c,/ a5.  (3.10) 

Now that we established the general form of B we proceed to give a general classification 
for the potential difference p = U - U using equation (3.4). 

Remark. Motivated by the treatment of the one-dimensional case one could take the 
scalar product of equation (2.15) with B to obtain 

u = u + ( B / B ' )  m(2VA-w) .  (3.11) 

Substituting this in (2.14) leads to 

(3.12) 

Since this equation is non-linear it can be solved directly only if V 2 B  = 0, i.e. w = 0. 
We shall show however that by solving equation (3.4) one can solve equations (2.14) 
and (2.15) in full generality. 

Since equation (3.6) establishes certain relations between the coefficients of B we 
carry the classification for p by considering several cases. 

3.1. a, # 0, a6 # 0, a, # 0 

Rewriting (3.4) explicitly we obtain 

B --B -= " p(2a6z -2a7y )  
d z  ay 

aP aP 

aP dP 
ay ax 

2 

B3--B,  -=p(2a ,x -2a5z )  
ax  az 

B, - -B2-=p(2a5y-2a ,x ) .  

Multiplying these equations by a s ,  a6 and a, respectively and adding leads to 

aP aP ( a 5 B 2 - a 6 B , )  - + ( a , B 1  -a,&) -=O. 
a Z  ax 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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However, we observe from (3.7) that 

w x B = f w  x x. 

Hence (3.16) reduces to 

whose general solution is 

p = F(X2+y2+ Z 2 ,  a 5 X - k  a6y + a 7 Z )  

where F is a general (smooth) function. 

2079 

(3.17) 

(3.18) 

(3.19) 

Remark. We can obtain equation (3.17) also by multiplying (3.13)-(3.15) by x,  y ,  z 
respectively and observing that (using (3.7)) 

x x B = taw x x. 

p in (3.13)-(3.15) and obtain 

(3.20) 
To see the constraints that have to be imposed on F i n  equation (3.19) we substitute 

aF aF 
a-+f-+2F=O. 

da af 
Hence, finally we infer that 

(3.21) 

(3.22) 

where G is an arbitrary smooth function. 

a 5 ,  a6, a7 are non-zero. Hence we shall give no special treatment to this case. 
We note that the same result for p will be obtained if only two of the constants 

3.2. a5 = a6 = a, = 0, a8 # 0, c = (c,, c2, c3) # 0 

Equations (3.13)-(3.15) reduce in this case to 

aP aP 
82 ay 

dP JP  

(a,y + c2) -- (agz + c3) - = 0 

(agz + c3) -- (agx + c,) - = 0 

(asy + CJ - = 0. 

ax d Z  

dP 
ax 

Multiplying by x, y and z respectively and adding we obtain 

dP aP JP 
a Z  ay ax 

( C Z X  - cly) -+ ( C I Z  - c3x) -+ (c3y - C ' Z )  -= 0. 

Hence 

p =  F ( x 2 + y 2 + z 2 ,  c , x + c 2 y + ~ 3 z ) = F ( a ' , b ) .  

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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To find the constraints on F we substitute this result in (3.23)-(3.25) to obtain 

dF 8F 
a8 -+2 -= 0. 

ab a6 (3.28) 

Hence 

F = F ( 2 b  - as;) .  (3.29) 

We also note that if c = O  then it is easy to show that F = F ( 6 ) .  Similarly if a,=O 
then F = F ( b ) .  We also observe that if B=O then from (2 .26) ,  (2 .27)  it follows that 
U - v = o .  

3.3. Two of U,-, a6 and a, are zero 

In the following we treat only one case 

a,#O a6=a,=0 

as other possible choices yield symmetric results. 
From (3 .6)  it follows that c3 = c2 = 0 and  therefore equations (3.13)-(3.15) reduce to 

dP dP z (  a5x + us) - - [4u5(x2 - y 2  - 2’)  + a8x + c,] - = -2u5xp 
ax a Z  

aP dP 
ay ax 

[tu,(x’- y 2 -  z’) + usx+ c,] --y(a5x+ as)  -= 2a5yp. 

(3.30) 

(3.31) 

(3.32) 

From these equations it is obvious that without loss of generality we can let a5 = 1 .  
From (3.30) it follows that 

p = F ( y 2 + z 2 ,  X) = F ( s ,  X) 

Substituting this in (3.31) or  (3.32) yields 

d F  aF 
(x + U*) -- 2 [ t ( x 2  - s) + agx + c,] - = -2F. 

ax as 

Hence 

1 U 
F = - G (-) . 

(x+a,)2 x+a, 
(3 .33)  

Thus although the treatment needed in this case is somewhat different than in § 3.1 
the final result is the same, i.e. it can be obtained by substituting a6 = a7 = c2 = c3 = 0 
in (3.22). 

4. Solutions for A 

In this section we solve equations (2 .14)  and (2 .15)  in full generality for the class of 
admissible potential differences which were found in the previous section. At the same 
time we also present the general form of the potentials U which are compatible with 
the resulting constraints. 
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As in the previous section we divide our discussion into cases. However we do  
not treat separately the case a6 = a7 = c2 = c3 = 0 in view of the results of the previous 
section. 

4.1. w # 0 (assume that at least as, a6 # 0) 

Taking the vector product of (2.15) with w and using (3.7) we obtain 

( w x x ) * V A = O .  (4.1) 

A =  ~ ( x - x ,  w -  x ) =  h ( a , f ) .  

Hence 

(4.2) 

Substituting this result in (2.15) leads to 

2 2x-+a5- + B , p = a ,  ( 2 :;I (4.3) 

(4.4) 

Multiplying (4.3) and (4.4) by a6 and a5 respectively and subtracting using (3.7) yields 

aA 
aa 

4-+fp =o. (4.5) 

Similarly if we multiply these equations by y and x respectively and subtract we obtain 
(after using (3.7)) 

aA 
4--ap=2.  

a f  
From (4.5) and (4.6) it follows then.that 

(4.6) 

aA aA 
2a-+2f-=J: 

aa af 

Hence 

A = ' f - ' F (  2 4 a )  

where CY = a / J  
Substituting this result back in (4.5) using (3.22) leads to 

F ' =  G. (4.9) 

Substituting (4.8) and (4.9) in (2.14) yields after somewhat lengthy algebra to 

( vF ' ) '+ i (  F 2 ) ' =  -f [ B  V U  + 2 f (  U + A ) ]  (4.10) 

where 

v = a a 2 ( w .  w )  + aga + c , / 2 a 5 .  (4.11) 

Hence 

vF'+gF* = - g (  C Y )  (4.12) 
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and 

B * V U  + 2f( U + A )  = g’(a)/f2 (4.13) 

where g ( a )  is some smooth function. 

mation 
Equation (4.12) is a Ricatti equation which can be linearised through the transfor- 

F = 8 v u ‘ / u  (4.14) 

and we obtain 

(4.15) 

Equation (4.13) on the other hand imposes a constraint on the potentials U which are 
amenable for treatment by Darboux transformations (under the present assumptions). 
To see how this constraint is satisfied we introduce 

(4.16) q =f2 * (U + A ) .  

Equation (4.13) becomes 

B .  Vq+2qv’-g‘(a)=O. (4.17) 

To eliminate the middle term in (4.17) we define q = p / v  and obtain 

B Vp = g’(CY)v. (4.18) 

The general solution of equation (4.18) is the sum of a particular solution of the 
inhomogeneous equation and the general solution of the homogeneous one. To find 
a particular solution we let p = p ( a )  in (4.18) and obtain p = g / 2 .  To solve the 
homogeneous part of (4.18) we make a coordinate transformation to 

p = w x x  (4.19) 

and obtain 

Hence the general solution for p is 

(4.20) 

(4.21) 

Thus we proved that equation (4.10) is consistent only if U + A is of the form 

u + A  = (l/f2v)[tg(.)+5(P2/P,, P3/Pl)l. (4.22) 

A is then obtained from equations (4.14) and (4.15). We believe that the results 
represented by (4.22) and (3.22) are new. 

4.2. B = c 

Since B = 0 is trivial we can assume without loss of generality that B’ = 1 and B1 # 0. 
To solve equation (2.15) under the present assumptions we take the scalar product of 
this equation with B and introduce the coordinates. 

(4.23) 
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We obtain using the previous results about this case that 

aA -+1 - 
aa 2 P - 0  (4.24) 

i.e. 

A=’ 2 p ( a )  d a  + S(P, Y). (4.25) 

However if we substitute this back in (2.15) it follows that 6 must be a constant. 
Substituting these results in (2.14) leads to 

(4.26) A”- ( A ~ ) ’ +  B .  V U  = 0. 

Hence 

A’- A’ = - g ( a )  

and 

B * V U  = g’( a )  

(4.27) 

(4.28) 

Using the same coordinate transformation as before we infer that 

u = g ( a ) + 6 2 ( P ,  Y) (4.29) 

where t2 is an arbitrary smooth function. Equation (4.27) can be linearised and solved 
through the transformation A = d/u. 

4.3. B = a x + c ,  a # O  

When a # 0 we can let c = 0 since equations (2.14) and (2.15) are invariant with respect 
to translations. From the results of the previous section it then follows that p = p(  r )  
and it is natural to treat this case in spherical coordinates. 

Since B, = ar, Be = B, = 0 it follows from (2.15) that 

(4.30) 

Hence A = A ( r )  and p = -2A’/ar.  Substituting these results in (2.14) leads to 

rA”+ 2A‘ - - (A2) ’+ 1 a - [ r 2 (  a U + A ) ]  =o. (4.31) 
a ar 

Hence 

a 
-[ r2 (  U + A ) ]  = g’( r )  
a r  

(4.32) 

and 

1 
rA’+ A - -A2 + ag( r )  = 0 (4.33) 

a 

where g( r )  is an arbitrary smooth function. Thus U + A must be of the form 

U + A = r - ’ [ g (  r )  + [( 0, cp)]. (4.34) 
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Equation (4.33) is once again a Ricatti equation which can be linearised by the 
transformation 

A = - a r u ‘ / u  (4.35) 

which yields 

( r 2 u ’ ) ’ - g ( r ) u = 0  (4.36) 

and 

p = U - v = (2/r)[ru‘/u]’. (4.37) 

We observe that equation (2.9) with potentials of the form (4.34) is separable. In 
fact it is easy to show that the results of this case can be obtained by performing 
one-dimensional Darboux transformations on the radial part of equation (2.9) with 
B = ar. In view of this result it is important to point out that when w f 0 equations 
(4.22) and (3.22) establish the existence of a generic new class of potentials and 
potential differences in three dimensions whose solutions are related to each other by 
Darboux transformations. 
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